Distributed Random-Fixed Projected Algorithm for Constrained Optimization Over Digraphs
نویسندگان
چکیده
This paper is concerned with a constrained optimization problem over a directed graph (digraph) of nodes, in which the cost function is a sum of local objectives, and each node only knows its local objective and constraints. To collaboratively solve the optimization, most of the existing works require the interaction graph to be balanced or “doubly-stochastic”, which is quite restrictive and not necessary as shown in this paper. We focus on an epigraph form of the original optimization to resolve the “unbalanced” problem, and design a novel two-step recursive algorithm with a simple structure. Under strongly connected digraphs, we prove that each node asymptotically converges to some common optimal solution. Finally, simulations are performed to illustrate the effectiveness of the proposed algorithms.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملDistributed Convex Optimization with Inequality Constraints over Time-varying Unbalanced Digraphs
This paper considers a distributed convex optimization problem with inequality constraints over time-varying unbalanced digraphs, where the cost function is a sum of local objectives, and each node of the graph only knows its local objective and inequality constraints. Although there is a vast literature on distributed optimization, most of them require the graph to be balanced, which is quite ...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.05986 شماره
صفحات -
تاریخ انتشار 2017